What makes PyTorch beloved makes it hard to compile The nuanced story of PyTorch Compiler(s)

Peng Wu (pengwu@fb.com) Engineering Manager, PyTorch Compilers

A ML framework's **design philosophy** determines **unique challenges** of its framework compiler

- PyTorch graph capture is non-trivial
 Impedance mismatch between
 - accelerator and PyTorch opsets, e.g.,
 - non functional ops (inplace, view)
 - dynamic shape
 - data-dependent control-flow
 - Large op surface makes it hard to achieve complete IR coverage

Why should you care about PyTorch graph capture?

Chip designers

Eager-mode execution is considered prohibitively costly for accelerators

Production engineers

Most PyTorch **inference deployments** are *exported* **out of Eager** via graph capture

Compiler engineers

No graph no compiler

Why are PyTorch Compilers plural?

- TorchScript (torch.jit.trace, torch.jit.script), Static Runtime, Lite Interpreter
- nnc, nvfuser
- torch.fx (incl. fxtrt, fxacc, fxait)
- torch.package, torch.deploy
- torch-mlir, pytorch/xla, Lazy Tensor Core
- TorchDynamo, TorchInductor

. . .

TorchScript

- TS frontend supports **subset of Python** w/ user-annotated types;
- **TS IR** supports **aten ops, control-flow**, **mutation**, complex data types;
- TS middle-end does IR cleansing, property propagation, and optimizations;
- TS is executed by TS interpreter exported out of Python

class MyCell(torch.nn.Module): def init (self): super(MyCell, self). init () self.linear = torch.nn.Linear(4, 4)

```
return new h, new h
```

```
my cell = MyCell()
scripted cell(x, h)
```

def forward(self, x: Tensor, h: Tensor): new h = torch.tanh(self.linear(x) + h)

 \mathbf{x} , $\mathbf{h} = \text{torch.rand}(3, 4)$, torch.rand(3, 4)scripted_cell = torch.jit.script(my_cell)

TorchScript – the very 1st PyTorch Compiler

- Frontend: ahead-of-time, whole-graph capture • Capture once replay many times
- Deployment: export-path
 - good for inference-at-scale and edge devices

Limitations

- **UX**: either not out-of-box (e.g., scripting) or unsound (e.g., tracing)
- **Training**: support incomplete

TorchDynamo – the 1st out-of-the-box PyTorch graph capture

Dynamo + a good backend makes *unmodified* PyTorch models faster

TorchDynamo vs TorchScript FE

- Dynamo does not require changing the model (aka out-of-the-box capture)
 - Dynamo captures partial graphs and falls back to eager Ο
 - Dynamo captures graphs with guards and recapture when guards Ο mismatch replay
- Dynamo reliably captures backward graphs (aka training)

TorchDynamo

An Example

Example Output

ompiler()	called wi	th FX graph:	
le	name	target	args
holder	а	a	()
holder	b	b	()
function	abs_1	torch.abs	(a,)
function	add	operator.add	(abs_1, 1)
function	truediv	operator.truediv	(a, add)
method	sum_1	sum	(b,)
function	lt	operator.lt	(sum_1, 0)
it	output	output	((truediv, lt),)

ompiler()	called wi	th FX graph:	
le	name	target	args
holder	b	b	()
holder	Х	Х	()
function	mul	operator.mul	(b, -1)
function	mul_1	operator.mul	(x, mul)
lt	output	output	((mul_1,),)

<pre>mpiler()</pre>	called wi	lth FX graph:	
le	name	target	args
holder	b	b	()
holder	Х	Х	()
function	mul	operator.mul	(x, b)
t	output	output	((mul,),)

What makes TorchDynamo graph capture sound and out-of-the-box?

	Soundness characteristics	
Partial graph capture	Ability to skip unwanted parts of eager	
Guarded graphs	Ability to check if captured graph is valid for	
Just-in-time recapture	recapture a graph if captured graph is inva	

r execution

lid for execution

AOT Autograd – Get Backward Graph from Forward

- TorchDynamo captures the forwards
- Backwards in PyTorch is done through dynamic autograd tape
- We need to capture the dynamic autograd behavior at compile time

AOT Autograd

- Traces the behavior of the PyTorch autograd tape
- Works on partial graph fragments

d tape ompile time

Creating New Backends is Easy

def my compiler(gm: torch.fx.GraphModule, example inputs: List[torch.Tensor]): scripted = torch.jit.trace(gm, example inputs) return torch.jit.optimize for inference(scripted)

Dynamo workflow

- Capture FX graphs
- Passe FX graphs to registered compiler hook to compile Ο
- Executes the Callable objects returned by invoking the compiler hook
- Custom compiler hooks can be other PyTorch compilers
 - e.g., Dynamo + torch.jit.trace, Dynamo + TRT, Dynamo + Cudagraph
 - e.g., Dynamo + LTC

TorchDynamo today

- OOTB graph capture demonstrated on
 - 7K+ crawled github models
- Easy backend integration demonstrated
 - 20+ inference backends (e.g., TS, TRT, LTC)
 - 2 training backends (nvfuser, TorchInductor)
- Training speedup demonstrated w/ Just-in-time partial graph capture
 - 30%+ geomean OOTB speedup over TB, TIMM, HF benchmarks (150+ models, single-node, A100)

- Hardening & tools • Dynamic shape Distributed Recompilation UX improv. • Whole-graph mode

Ongoing work

Mental models of PyTorch Compilers

When to use which graph capture?

Current recommendations Vision for the future? For training - All (but XLA or TPU) \Rightarrow Dynamo - Export to XLA or TPU \Rightarrow Lazy Tensor • For inference - Embedded \Rightarrow TS - Non-embedded \Rightarrow TS or FX • For human-in-the-loop tools \Rightarrow FX

 Consolidate graph capture across eager and export-path for a smooth UX

Take-aways

- PyTorch's Eager-first design makes graph capture a unique challenge TorchDynamo – 3rd-gen PT compiler FE but 1st out-of-the-box one
- With more models *effortlessly* funnelled into graph mode, the era of compiler-accelerated PyTorch is coming
 - training -> dynamic shape -> prim -> export-path -> distributed
- Mindshifts for ML chip and compiler designers
 - from whole graphs to **partial graphs**
 - from export-path deployment to eager or eager-export-hybrid deployment

For more information

- Repo https://github.com/pytorch/torchdynamo
- <u>PyTorch Dev Discussion</u> compiler category

Meta Al

Mental models of PyTorch Compilers

Is it a **frontend** (graph capture), a **middle-end** (graph compiler), a **backend**, or a **runtime**?

- 1. On frontend
 - Is it for export-path deployment (e.g., inference) or eager deployment (e.g., а. training)?
 - b. Does it require (ahead-of-time) whole-graph or (just-in-time) partial-graph capture?
- 2. On middle-end
 - Is it a **torch-native** graph optimizer or just a bridge to another IR? a.
- 3. On runtime
 - Does it implement **torch-native opsets or not**? a.
 - Is it driven by **Eager**? b.