
What makes PyTorch beloved makes it hard to compile

– The nuanced story of PyTorch Compiler(s)

Peng Wu (pengwu@fb.com)
Engineering Manager, PyTorch Compilers

https://www.linkedin.com/in/peng-wu-411b5b/

A ML framework’s design philosophy
determines unique challenges of its
framework compiler

• PyTorch graph capture is non-trivial
• Impedance mismatch between

accelerator and PyTorch opsets, e.g.,
﹘ non functional ops (inplace, view)
﹘ dynamic shape
﹘ data-dependent control-flow

• Large op surface makes it hard to
achieve complete IR coverage

Chip designers

Eager-mode execution is
considered prohibitively
costly for accelerators

Mental Models of PyTorch Compilers

Production engineers

Most PyTorch inference
deployments are
exported out of Eager
via graph capture

Compiler engineers

No graph no compiler

Why should you care about PyTorch graph capture?

Why are PyTorch Compilers plural?

● TorchScript (torch.jit.trace, torch.jit.script), Static Runtime, Lite Interpreter

● nnc, nvfuser

● torch.fx (incl. fxtrt, fxacc, fxait)

● torch.package, torch.deploy

● torch-mlir, pytorch/xla, Lazy Tensor Core

● TorchDynamo, TorchInductor

● …

Mental models of PyTorch Compilers

TorchScript
● TS frontend supports subset of Python

w/ user-annotated types;
● TS IR supports aten ops, control-flow,

mutation, complex data types;
● TS middle-end does IR cleansing,

property propagation, and
optimizations;

● TS is executed by TS interpreter –
exported out of Python

class MyCell(torch.nn.Module):
 def __init__(self):
 super(MyCell, self).__init__()
 self.linear = torch.nn.Linear(4, 4)

 def forward(self, x: Tensor, h: Tensor):
 new_h = torch.tanh(self.linear(x) + h)
 return new_h, new_h

my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
scripted_cell = torch.jit.script(my_cell)
scripted_cell(x, h)

Mental models of PyTorch Compilers

TorchScript – the very 1st PyTorch Compiler

● Frontend: ahead-of-time, whole-graph capture
○ Capture once replay many times

● Deployment: export-path
○ good for inference-at-scale and edge devices

Mental models of PyTorch Compilers

Limitations
● UX: either not out-of-box (e.g., scripting) or unsound (e.g., tracing)
● Training: support incomplete

TorchDynamo – the 1st out-of-the-box PyTorch graph capture

Dynamo + a good backend makes unmodified PyTorch models faster

TorchDynamo vs TorchScript FE

● Dynamo does not require changing the model (aka out-of-the-box capture)

○ Dynamo captures partial graphs and falls back to eager

○ Dynamo captures graphs with guards and recapture when guards
mismatch replay

● Dynamo reliably captures backward graphs (aka training)

TorchDynamo

An Example
my_compiler() called with FX graph:
opcode name target args
------------- ------- ---------------- ----------------
placeholder a a ()
placeholder b b ()
call_function abs_1 torch.abs (a,)
call_function add operator.add (abs_1, 1)
call_function truediv operator.truediv (a, add)
call_method sum_1 sum (b,)
call_function lt operator.lt (sum_1, 0)
output output output ((truediv, lt),)

my_compiler() called with FX graph:
opcode name target args
------------- ------ ---------------- -----------
placeholder b b ()
placeholder x x ()
call_function mul operator.mul (b, -1)
call_function mul_1 operator.mul (x, mul)
output output output ((mul_1,),)

my_compiler() called with FX graph:
opcode name target args
------------- ------ ---------------- ---------
placeholder b b ()
placeholder x x ()
call_function mul operator.mul (x, b)
output output output ((mul,),)

Example Output
TorchDynamo

Python PEP 523 API

Impacted deployment: export-path (which uses AOT/unguarded graph capture)

TorchDynamo

What makes TorchDynamo graph capture sound and
out-of-the-box?

Soundness characteristics

Partial graph capture Ability to skip unwanted parts of eager

Guarded graphs Ability to check if captured graph is valid for execution

Just-in-time recapture recapture a graph if captured graph is invalid for execution

● TorchDynamo captures the forwards
● Backwards in PyTorch is done through dynamic autograd tape
● We need to capture the dynamic autograd behavior at compile time

AOT Autograd

● Traces the behavior of the PyTorch autograd tape
● Works on partial graph fragments

AOT Autograd – Get Backward Graph from Forward
TorchDynamo

Creating New Backends is Easy

TorchDynamo

● Dynamo workflow
○ Capture FX graphs
○ Passe FX graphs to registered compiler hook to compile
○ Executes the Callable objects returned by invoking the compiler hook

● Custom compiler hooks can be other PyTorch compilers
○ e.g., Dynamo + torch.jit.trace, Dynamo + TRT, Dynamo + Cudagraph
○ e.g., Dynamo + LTC

TorchDynamo today

TorchDynamo

• OOTB graph capture demonstrated on
﹘ 7K+ crawled github models

• Easy backend integration demonstrated
﹘ 20+ inference backends (e.g., TS, TRT, LTC)
﹘ 2 training backends (nvfuser, TorchInductor)

• Training speedup demonstrated w/
Just-in-time partial graph capture
﹘ 30%+ geomean OOTB speedup over TB,

TIMM, HF benchmarks (150+ models,
single-node, A100)

Ongoing work

• Hardening & tools
• Dynamic shape
• Distributed
• Recompilation UX improv.
• Whole-graph mode

Mental models of PyTorch Compilers

When to use which graph capture?

Current recommendations

• For training
﹘ All (but XLA or TPU) ⇒ Dynamo
﹘ Export to XLA or TPU ⇒ Lazy Tensor

• For inference
﹘ Embedded ⇒ TS
﹘ Non-embedded ⇒ TS or FX

• For human-in-the-loop tools ⇒ FX

Mental models of PyTorch Compilers

Vision for the future?

• Consolidate graph capture across eager
and export-path for a smooth UX

Take-aways

● PyTorch’s Eager-first design makes graph capture a unique challenge
○ TorchDynamo – 3rd-gen PT compiler FE but 1st out-of-the-box one

● With more models effortlessly funnelled into graph mode, the era of
compiler-accelerated PyTorch is coming
○ training -> dynamic shape -> prim -> export-path -> distributed

● Mindshifts for ML chip and compiler designers
○ from whole graphs to partial graphs
○ from export-path deployment to eager or eager-export-hybrid deployment

For more information
● Repo – https://github.com/pytorch/torchdynamo
● PyTorch Dev Discussion – compiler category

https://dev-discuss.pytorch.org

Mental models of PyTorch Compilers

Is it a frontend (graph capture), a middle-end (graph compiler), a backend, or a runtime?

1. On frontend

a. Is it for export-path deployment (e.g., inference) or eager deployment (e.g.,
training)?

b. Does it require (ahead-of-time) whole-graph or (just-in-time) partial-graph
capture?

2. On middle-end

a. Is it a torch-native graph optimizer or just a bridge to another IR?

3. On runtime

a. Does it implement torch-native opsets or not?

b. Is it driven by Eager?

Mental models of PyTorch Compilers

